Admissible and Minimax Estimator of the Parameter $theta$ in a Binomial $Bin( n ,theta)$ ­distribution under Squared Log Error Loss Function in a Lower Bounded Parameter Space

نویسنده

چکیده مقاله:

Extended Abstract. The study of truncated parameter space in general is of interest for the following reasons: 1.They often occur in practice. In many cases certain parameter values can be excluded from the parameter space. Nearly all problems in practice have a truncated parameter space and it is most impossible to argue in practice that a parameter is not bounded. In truncated parameter space, the commonly used estimators of $theta$ such as the maximum likelihood estimators are inadmissible. Even more characteristic is the fact that boundary rules are mostly inadmissible, where a boundary estimator is an estimator which takes, with positive probability for some ...[To continue please click here]

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function

The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....

متن کامل

minimax estimator of a lower bounded parameter of a discrete distribution under a squared log error loss function

the problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including binomial negative binomial discrete weibull and etc., is considered. we give necessary and sufficient conditions for which the bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function. for s...

متن کامل

An Admissible Estimator of a Lower-bounded Scale Parameter under Squared-log Error Loss Function

Estimation in truncated parameter space is one of the most important features in statistical inference, because the frequently used criterion of unbiasedness is useless, since no unbiased estimator exists in general. So, other optimally criteria such as admissibility and minimaxity have to be looked for among others. In this paper we consider a subclass of the exponential families of distributi...

متن کامل

Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function

The problem of estimating the parameter θ, when it is restricted to an interval of the form [ ,1] m , in a class of discrete distributions, including Binomial ( , ), k θ Negative Binomial ( , ), r θ discrete Weibull ( ) θ and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of , θ with respect to a two points boundary supported prior is minimax unde...

متن کامل

Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space

 Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...

متن کامل

Admissibility in a One Parameter Non-regular Family with Squared-log Error Loss Function

‎Consider an estimation problem in a one-parameter non-regular distribution when both endpoints of the support depend on a single parameter‎. ‎In this paper‎, ‎we give sufficient conditions for a generalized Bayes estimator of a parametric function to be admissible‎. ‎Some examples are given‎. ‎

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 2

صفحات  129- 140

تاریخ انتشار 2006-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023